# A Typical Place In The Universe
###### A typical place in the universe is cold, empty and dark
What is a typical place in the universe like? Let me assume that you are reading this on Earth. In your mind’s eye, travel straight upwards a few hundred kilometres. Now you are in the slightly more typical environment of space. But you are still being heated and illuminated by the sun, and half your field of view is still taken up by the solids, liquids and scums of the Earth. A typical location has none of those features. So, travel a few trillion kilometres further in the same direction. You are now so far away that the sun looks like other stars. You are at a much colder, darker and emptier place, with no scum in sight. But it is not yet typical: you are still inside the Milky Way galaxy, and most places in the universe are not in any galaxy. Continue until you are clear outside the galaxy – say, a hundred thousand light years from Earth. At this distance you could not glimpse the Earth even if you used the most powerful telescope that humans have yet built. But the Milky Way still fills much of your sky. To get to a typical place in the universe, you have to imagine yourself at least a thousand times as far out as that, deep in intergalactic space.
What is it like there? Imagine the whole of space notionally divided into cubes the size of our solar system. If you were observing from a typical one of them, the sky would be pitch black. The nearest star would be so far away that if it were to explode as a supernova, and you were staring directly at it when its light reached you, you would not see even a glimmer. That is how big and dark the universe is. And it is cold: it is at that background temperature of 2.7 kelvin, which is cold enough to freeze every known substance except helium. (Helium is believed to remain liquid right down to absolute zero, unless highly pressurized.)
And it is empty: the density of atoms out there is below one per cubic metre. That is a million times sparser than atoms in the space between the stars, and those atoms are themselves sparser than in the best vacuum that human technology has yet achieved. Almost all the atoms in intergalactic space are hydrogen or helium, so there is no chemistry. No life could have evolved there, nor any intelligence. Nothing changes there. Nothing happens. The same is true of the next cube and the next, and if you were to examine a million consecutive cubes in any direction the story would be the same.
Cold, dark and empty. That unimaginably desolate environment is typical of the universe – and is another measure of how untypical the Earth and its chemical scum are, in a straightforward physical sense.
###### Or is it?
To investigate the ultimate reach of humans (or of people, or of progress), we should not be considering places like the Earth and the moon, which are unusually rich in resources. Let us go back to that typical place. While the Earth is inundated with matter, energy and evidence, out there in intergalactic space all three are at their lowest possible supply. There is no rich supply of minerals, no vast nuclear reactor overhead delivering free energy, no lights in the sky or diverse local events to provide evidence of the laws of nature. It is empty, cold and dark. Or is it? Actually, that is yet another parochial misconception. Intergalactic space is indeed very empty by human standards. But each of those solar-system-sized cubes still contains over a billion tonnes of matter – mostly in the form of ionized hydrogen. A billion tonnes is more than enough mass to build, say, a space station and a colony of scientists creating an open-ended stream of knowledge – if anyone were present who knew how to do that.
No human today knows how. For instance, one would first have to transmute some of the hydrogen into other elements. Collecting it from such a diffuse source would be far beyond us at present. And, although some types of transmutation are already routine in the nuclear industry, we do not know how to transmute hydrogen into other elements on an industrial scale. Even a simple nuclear-fusion reactor is currently beyond our technology. But physicists are confident that it is not forbidden by any laws of physics, in which case, as always, it can only be a matter of knowing how.
No doubt a billion-tonne space station is not large enough to thrive in the very long run. The inhabitants will want to enlarge it. But that presents no problem of principle. As soon as they started to trawl their cube for hydrogen, more would drift in from the surrounding space, supplying the cube with millions of tonnes of hydrogen per year. (There is also believed to be an even greater mass of ‘dark matter’ in the cube, but we do not know how to do anything useful with it, so let us ignore it in this thought experiment.)
As for the cold, and the lack of available energy – as I said, the transmutation of hydrogen releases the energy of nuclear fusion. That would be a sizeable power supply, orders of magnitude more than the combined power consumption of everyone on Earth today. So the cube is not as lacking in resources as a parochial first glance would suggest.
How would the space station get its vital supply of evidence? Using the elements created by transmutation, one could construct scientific laboratories, as in the projected moon base. On Earth, when chemistry was in its infancy, making discoveries often depended on travelling all over the planet to find materials to experiment on. But transmutation makes that irrelevant; and chemical laboratories on the space station would be able to synthesize arbitrary compounds of arbitrary elements. The same is true of elementary particle physics: in that field, almost anything will do as a source of evidence, because every atom is poten- tially a cornucopia of particles just waiting to display themselves if one hits the atom hard enough (using a particle accelerator) and observes with the right instruments. In biology, DNA and all other biochemical molecules could be synthesized and experimented on. And, although biology field trips would be difficult (because the closest natural ecosystem would be millions of light years away), arbitrary life forms could be created and studied in artificial ecosystems, or in virtual-reality simulations of them. As for astronomy – the sky there is pitch black to the human eye, but to an observer with a telescope, even one of present-day design, it would be packed with galaxies. A somewhat bigger telescope could see stars in those galaxies in sufficient detail to test most of our present-day theories of astrophysics and cosmology.
Even aside from those billion tonnes of matter, the cube is not empty. It is full of faint light, and the amount of evidence in that light is staggering: enough to construct a map of every star, planet and moon in all the nearest galaxies to a resolution of about ten kilometres. To extract that evidence in full, the telescope would need to use something like a mirror of the same width as the cube itself, which would require at least as much matter as building a planet. But even that would not be beyond the bounds of possibility, given the level of technology we are considering. To gather that much matter, those intergalactic scientists would merely have to trawl out to a distance of a few thousand cube-widths – still a piffling distance by intergalactic stand- ards. But even with a mere million-tonne telescope they could do a lot of astronomy. The fact that planets with tilted axes have annual seasons would be plain to see. They could detect life if it was present on any of the planets, via the composition of its atmosphere. With more subtle measurements they could test theories about the nature and history of life – or intelligence – on the planet. At any instant, a typical cube contains evidence, at that level of detail, about more than a trillion stars and their planets, simultaneously.
And that is only one instant. Additional evidence of all those kinds is pouring into the cube all the time, so astronomers there could track changes in the sky just as we do. And visible light is only one band of the electromagnetic spectrum. The cube is receiving evidence in every other band too – gamma rays, X-rays, all the way down to the micro- wave background radiation and radio waves, as well as a few cosmic- ray particles. In short, nearly all the channels by which we on Earth currently receive evidence about any of the fundamental sciences are available in intergalactic space too.
And they carry much the same content: not only is the universe full of evidence, it is full of the same evidence everywhere. All people in the universe, once they have understood enough to free themselves from parochial obstacles, face essentially the same opportunities.This is an underlying unity in the physical world more significant than all the dissimilarities I have described between our environment and a typical one: the fundamental laws of nature are so uniform, and evidence about them so ubiquitous, and the connections between understanding and control so intimate, that, whether we are on our parochial home planet or a hundred million light years away in the intergalactic plasma, we can do the same science and make the same progress.
So a typical location in the universe is amenable to the open-ended creation of knowledge. And therefore so are almost all other kinds of environment, since they have more matter, more energy and easier access to evidence than intergalactic space. The thought experiment considered almost the worst possible case. Perhaps the laws of physics do not allow knowledge-creation inside, say, the jet of a quasar. Or perhaps they do. But either way, in the universe at large, knowledge- friendliness is the rule, not the exception. That is to say, the rule is person-friendliness to people who have the relevant knowledge. Death is the rule for those who do not. These are the same rules that prevailed in the Great Rift Valley from whence we came, and have prevailed ever since.
---
Date: 20250408
Links to: [Beginning of Infinity](Beginning%20of%20Infinity.md) Chapter 3, [3 - The Spark](3%20-%20The%20Spark.md)
Tags:
References:
* []()