# Eigendecomposition
An **eigendecomposition** is simply a change of basis, where in this new basis a matrix $A$ is described via a *diagonal matrix* $\Lambda$:
$\Lambda = U^{-1} A U $
And we can thus represent $A$ as:
$A = U \Lambda U^{-1} $
**TODO: Visualize change of basis in notes or something**
---
Date: 20220312
Links to:
Tags:
References:
* [Eigendecomposition : Data Science Basics - YouTube](https://www.youtube.com/watch?v=KTKAp9Q3yWg&t=436s)
* [Eigenvectors and eigenvalues | Chapter 14, Essence of linear algebra - YouTube](https://youtu.be/PFDu9oVAE-g?t=893)
* [Eigenvalues and Eigenvectors. Explained by change of basis and… | by Risto Hinno | The Startup | Medium](https://medium.com/swlh/eigenvalues-and-eigenvectors-5fbc8b037eed)