# Graph of Function
The **graph** of a function $f$ is the set of [ordered pairs](https://en.wikipedia.org/wiki/Ordered_pair "Ordered pair") $(x,y)$ where $f(x) = y$.
The technical definition is:
> Given a mapping $f: X \rightarrow Y$, in other words a function $f$ together with its domain $X$ and codomain $Y$, the graph of the mapping is the set:
> $G(f) = \{ (x, f(x)) \mid x \in X \}$
> which is a subset of $X \times Y$.
We can see that if $f: \mathbb{R}^n \rightarrow \mathbb{R}^m$, then the graph $G(f)$ is a subset of $\mathbb{R}^{n+m}$.
---
References
* [Wikipedia](https://en.wikipedia.org/wiki/Graph_of_a_function)